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Abstract— In this paper, a novel model predictive control
(MPC) scheme is presented for linear stochastic systems with
probabilistic constraints. Instead of the prediction of the be-
havior of the original linear stochastic system, the behavior
of a corresponding nominal linear system is predicted. Thus,
the optimization problem that is solved online has the same
computational burden as the ones of standard deterministic
MPC of nominal systems. The control signal is specified in terms
of both a nominal control action and an ancillary control law,
where the ancillary control law is an optimal control law of a
linear optimal stochastic control problem. Convergence of the
systems in probability is discussed. The approach is illustrated
with a numerical example.

I. INTRODUCTION

The idea behind model predictive control (MPC) is to
solve a finite horizon open-loop optimal control problem
at each instant of time by taking the current state of the
system as an initial state. The control inputs solved online are
implemented in accordance with a receding horizon scheme.

Predictive control schemes have been proposed to guaran-
tee stability and constraint fulfillment with respect to distur-
bances or perturbations. The aim is to determine solutions
against all possible uncertainty realizations, i.e. min-max
policy, where a plant family is characterized by an unknown
but bounded model [1–4]. Min-max policies are often com-
putationally demanding, and the resulting control law might
be very conservative. Constraint tightening approaches [5–
9] try to avoid computational complexity with a nominal
prediction model and tightened constraint sets. However,
the constraint sets often shrink drastically since generally
the effects of uncertainties increase exponentially with the
increase of the prediction horizon.

Stochastic MPC is addressed using available information
on the distribution of uncertainty, where convergence in prob-
ability and expected constraints or probabilistic constraints
are considered. Stochastic MPC considered multiplicative
uncertainty is proposed in [10], which provides methods to
handle probabilistic constraints and ensure stability through
the concept of invariance in probability. Both multiplicative
and additive uncertainties are considered in [11, 12], where
the proposed schemes are shown to have the properties of
closed-loop stability and feasibility. A key assumption in
these methods is that initial states belong to an invariant
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set in probability by a linear or an affine state feedback
law satisfying given constraints inside the set. Stochastic
MPC of linear systems with process and measurement noise
and bounded input policies is considered in [13], where the
autonomous system is supposed to be Lyapunov stable. The
optimization problem solved online is recursively feasible
and the state of the system is rendered mean-square bounded.

The main contribution of this paper can be summarized
as follows: the minimal variance control strategy for linear
continuous-time systems with respect to white noise is in-
vestigated, which is formulated as a convex optimization
problem. Boundedness of system states in probability is
estimated by Multivariate Chebyshev’s Inequality. MPC of
linear stochastic systems is proposed which has the same
computational burden as the standard MPC of deterministic
systems. The recursive application of the resulting control
policies renders the state of the overall system to converge to
a random variable with zero mean and bounded covariance.

The paper is structured as follows. In Section II the
problem setup and preliminary results are stated. The an-
cillary control law, the online optimization problem, the
probabilistic recursive of the proposed MPC scheme, and
the convergence of systems under control are discussed in
Section III. A numerical example is given in Section V.
Section VI concludes the paper.

A. Notations and Basic Definitions

For a vector ‖ · ‖ denote the Euclidean norm. Denote by
‖s‖M :=

√
sTMs for M = MT ≥ 0. For any random vector

s let E[s] and Cov[s] denote the expectation and covariance
matrix of s, respectively. For a symmetric matrix X ∈ R

n×n,
let X � 0(X � 0) denote that X is a positive (semi-)
definite matrix, and X ≺ 0(X 	 0) denote that X is a
negative (semi-) definite matrix. A continuous function θ :
[0, a) → [0,∞) is said to belong to class K if it is increasing
and θ(0) = 0. A continuous function β : [0, a) × [0,∞) →
[0,∞) is said to belong to class KL if for each fixed s, the
mapping β(r, s) belongs to K with respect to r and, for each
fixed r, the mapping β(r, s) decreasing with respect to s and
β(r, s) → 0 as s → ∞.

II. PROBLEM SETUP AND PRELIMINARY

Consider the linear time-invariant system with state x(t) ∈
R

nx , control input u(t) ∈ R
nu , and disturbance input w(t) ∈

R
nw

ẋ(t) = Ax(t) +Bu(t) +Bww(t). (1)

The disturbance w(t), t ≥ 0, is zero-mean, independent,
identically distributed white noise, and

Cov [wi(s), wi(t)] ≤ δ(t− s)α2
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where δ(·) is a Dirac delta function, and α is a given positive
constant. The system is subject to chance constraints

Pr {x(t) ∈ X} ≥ p, ∀t ≥ 0

Pr {u(t) ∈ U} ≥ p, ∀t ≥ 0,
(2)

with p ∈ (0, 1), where X and U denote the state constraints
and input constraints, respectively.

Note that general linear constraints on states and inputs
can be tackled using this framework. For instance, hard
constraints can be included as a special case of chance
constraints invoked with probability 1.

Assumption 1: U ⊂ R
nu is compact, X ⊆ R

nx is compact
and connected.

Assumption 2: The system state x(t) can be measured in
real time.

Assumption 3: The pair (A,B) is stabilizable, i.e., there
exists a linear control law Kx such that A+BK is Hurwitz.
Define a nominal system

˙̄x(t) = Ax̄(t) +Bū(t), (3)

i.e., w(t) ≡ 0. Denote v(t) = x(t) − x̄(t) as the error
(deviation) between the actual system (1) and the nominal
system (3). The dynamics of the error system is given as

v̇(t) = Av(t) +B(u(t)− ū(t)) +Bww(t). (4)

In this paper a control signal is designed which consists
of a nominal input ū(t) and a state feedback control law
K(x(t)− x̄(t)), that is,

u(t) = ū(t) +K (x(t) − x̄(t)) .

Choose u(t)− ū(t) = Kv(t) as a state feedback control law
of the system, and denote Acl = A + BK , then the error
system under the linear control law Kv(t) is

v̇(t) = Aclv(t) +Bww(t). (5)

The main objectives of this paper are to 1) develop
an MPC scheme of stochastic linear systems with chance
constraints (2), 2) discuss the properties of the proposed
MPC scheme.

There are two challenges inherent to our setup. First, in the
presence of unbounded (i.e., Gaussian) noise, in general it is
not possible to ensure any bound on the states. The additive
nature of the noise ensures that the state exits from any fixed
bounded set at some time [13]. Second, the hope to achieve
asymptotic stability is obviously not realistic in the presence
of unbounded and stochastic noise. Thus, convergence in
probability to a random variable or a set is resorted to.

Before proceeding it is necessary to present the elements
of probability theory and some set operations.

Definition 1: [14, 15] (Convergence in probability) A
continuous random variable X(t) converges in probability

to a random variable X , written X(t)
P−→ X , if for every

ε > 0,
lim
t→∞Pr {‖X(t)−X‖ > ε} = 0. (6)

Lemma 1: [16](Multivariate Chebyshev’s Inequality) For
any random vector X ∈ R

n with covariance matrix Σ,

Pr

{
(X − E[X ])TΣ−1(X − E[X ]) ≥ ε

} ≤ n

ε
, (7)

for all ε ≥ 0.
Definition 2: [17] Consider two sets A,B ⊂ R

n. The
Pontryagin difference of A and B is defined as

A� B =
{
x ∈ R

n| x+ y ∈ A, ∀y ∈ B},
and the Minkowski sum of A and B is defined as

A⊕ B =
{
x+ y|∃x ∈ A, y ∈ B}.

Definition 3: [18] The multiplication of a set B by a
matrix A denotes a mapping of all its elements

AB =
{
c| ∃b ∈ B, c = Ab

}
.

III. STOCHASTIC MODEL PREDICTIVE CONTROL

In this section a stochastic MPC scheme of linear systems
is proposed. The controller has two components: a nominal
control action calculated online generates a nominal and
predicted state trajectory, and the ancillary control law cal-
culated offline forces the trajectories of the error system (4)
to its origin in probability, i.e. the trajectory of system (1) is
forced to the nominal and predicted trajectory.

A. Ancillary Control Law

For the deterministic systems v̇(t) = Av(t) + Bh(t) +
Bww(t), where the disturbance is not a stochastic signal,
robust control invariant set is resorted to in the formulation
of the optimization problem of MPC [7–9]. In general, the
robust control invariant set Ωd of a deterministic system is
a compact set.

Let us move to the stochastic system (5). Suppose that the
linear feedback control law Kv has been determined. In fact,
the stochastic process {v(t, w), t ∈ [0, T ]} is a function of
two arguments of t and w. For fixed t, v(t; ·) is a random
variable and for fixed w, v(·;w) is thus a function of time
which is a realization of the process. For T > 0, denote
W [0, T ] as a realization of w(·) in the interval of [0, T ]. The
set

Rw(T ) := {v(T ;w(·)) | w(·) ∈ W [0, T ], v(0) = v0} ,
is called a reachable set of the system (5) at the time instant
T . The reachable set of a stochastic system is non-convex
and non-closeness [19]. Thus, it is not possible to find an
enclosing set of the reachable set Rw(T ).
Note that with a slight abuse of notation, the stochastic
process v(t, w) is denoted as v(t) for convenience.

Lemma 2: Consider linear system (5) where Acl is stable.
Suppose that v(0) = 0, then

E
[
v(t)v(t)T

] 	 α2Xc,

for all t ≥ 0, where Xc is the controllability Gramian that
can be obtained from the following Lyapunov equations:

AclXc +XcA
T
cl +BwB

T
w = 0.
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Proof: Due to v(0) = 0, the covariance matrix of v(t) is

E
[
v(t)vT (t)

]
=E

[∫ t

0

eAcl(t−τ1)Bww(τ1)dτ1·
(∫ t

0

eAcl(t−τ2)Bww(τ2)dτ2

)T
]

=E

[∫ t

0

∫ t

0

eAcl(t−τ1)Bww(τ1)w(τ2)
TBT

we
AT

cl(t−τ2)dτ1dτ2

]

=

∫ t

0

∫ t

0

eAcl(t−τ1)BwE
[
w(τ1)w(τ2)

T
]
BT

we
AT

cl(t−τ2)dτ1dτ2

	α2

∫ t

0

eAcl(t−τ1)BwB
T
we

AT
cl(t−τ1)dτ1

=α2

∫ t

0

eAclτBwB
T
we

AT
clτdτ

Since eAclτBw(e
AclτBw)

T � 0, for all t ≥ 0,

E
[
v(t)v(t)T

] 	 α2

∫ ∞

0

eAclτBwB
T
we

AT
clτdτ.

The lemma follows from the fact that the controllability
Gramian of (Acl, Bw) can be represented as

Xc =

∫ ∞

0

eAclτBwB
T
we

AT
clτdτ

which is a solution of AclXc +XcA
T
cl +BwB

T
w = 0. �

The following lemma characterizes Xc in terms of linear
matrix inequalities.

Lemma 3: The following statement is equivalent for the
system (5) while v(0) = 0.

(i) there exists Xc � 0 such that

AclXc +XcA
T
cl +BwB

T
w = 0, Xc 	 γ2I.

(ii) there exists Xa � 0 such that

AclXa +XaA
T
cl +BwB

T
w 	 0, Xa 	 γ2I.

(iii) there exists Xb � 0 and Yc such that[
AT

clXb +XbAcl XbBw

BT
wXb −I

]
	 0,[

Xb I
I γ2

]
� 0

(8)

where γ > 0.
Proof: (1) Since the controllability gramian is the unique
positive definite solution of the Lyapunov equation A clXc+
XcA

T
cl + BwB

T
w = 0 this is equivalent to saying that there

exists Xa such that

AclXa +XaA
T
cl +BwB

T
w 	 0, Xa 	 γ2I.

(2) With a change of variables Xb := X−1
a , the equation

above is equivalent to the existence of Xb such that

AT
clXb +XbAcl +XbBwB

T
wXb 	 0, X−1

b 	 γ2I.

Using Schur Complement for the two inequalities, it is equiv-
alent to the existence of Xb such that Equ.(8) is satisfied. �

The inequality condition (8) can be formulated as a linear
matrix inequality (LMI) problem [20] which is attractive
since the linear control law Kv as well as the upper bound
of E[vvT ] can be obtained simultaneously.

Corollary 1: For the system (4), suppose that there exist
a matrix X > 0 and matrices Y such that[

AX +BY + (AX +BY )T Bw

BT
w −I

]
	 0,[

X X
X γ2I

]
� 0.

(9)

Then, E[vvT ] 	 α2γ2I and K = Y X−1.
Proof: By substituting Xb = X−1 and K = Y X−1 in (8)
and performing a congruence transformation with the matrix
{X, I} respectively, Equ.(9) is obtained.

In terms of Lemma 2 and Lemma 3, the conclusion can
be drawn directly. �

Since w(t) is zero-mean and v(0) = 0,

E[v(t)] =E

[∫ t

0

eAcl(t−τ)Bww(τ)dτ

]

=

∫ t

0

eAcl(t−τ)BwE [w(τ)] dτ = 0.

Furthermore, since Cov[v] = E[vvT ]−E[v]E[v]T , E[vvT ] 	
α2Xc and Xc 	 γ2I ,

Cov[v] 	 α2γ2I.

The smallest possible upper-bound of γ 2 of the system (4)
can be computed by minimizing γ 2 over all variables γ2, X
and Y that satisfy the LMI (9).

Problem 1:

minimize
X,Y,γ2

γ2 (10)

subject to (9)

B. Boundedness of system states with probabilistic p

Denote the covariance of v as Σ, i.e., Σ := Cov[v], and
H = α2γ2I . For fixed ε > 0, define two sets

DΣ =
{
v ∈ R

nx | vTΣ−1v ≤ ε
}
,

DH =
{
v ∈ R

nx | vTH−1v ≤ ε
}
.

Due to Corollary 1, Σ 	 H and DΣ ⊆ DH .
In terms of Lemma 1, Pr{v ∈ DΣ} > 1− nx

ε , then

Pr{v ∈ DH} > 1− nx

ε
.

That is,

Pr{vTH−1v ≤ ε} = Pr{vT v ≤ α2γ2ε}
> 1− nx

ε
.

Choose r2 := α2γ2ε, and p = 1− nx

ε , the set

Z :=
{
v ∈ R

nx | vT v ≤ r2
}

(11)

is an estimate of the boundedness of system states with
probability p, and

Pr

{
vT v ≤ r2

}
> p.
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Furthermore, choose the sets X0 and U0 as follows

X0 = X � Z
U0 = U �KZ.

Then, the constraints (2) can be guaranteed with probability
p if x̄ ∈ X0 and ū ∈ U0.

C. MPC of Stochastic Systems

Nominal dynamics (3) rather than real dynamics (1) are
used to predict the system behaviors, i.e. no stochastic
disturbances are present. In order to guarantee satisfaction
of chance constraints (2), tightened and deterministic con-
straints are considered.

The online optimization problem is formulated as follows:
Problem 2:

minimize
ū(·;x̄(tk))

J(x̄(tk), ū(·; x̄(tk)))
subject to
˙̄x = Ax̄+Bū,

x̄(τ ; x̄(tk)) ∈ X0, τ ∈ [tk, tk + Tp),

ū(τ ; x̄(tk)) ∈ U0, τ ∈ [tk, tk + Tp),

x̄(tk + Tp; x̄(tk)) ∈ Xf ,

where Xf is the terminal set which will be introduced in
detail later. The cost function is

J(x̄(tk), ū(·; x̄(tk))) := S (x̄(tk + Tp, x̄(tk))) +∫ tk+Tp

tk

‖x̄ (τ ; x̄(tk)) ‖2Q + ‖ū (τ ; x̄(tk)) ‖2Rdτ,
(12)

where Tp is the prediction horizon, Q ∈ R
nx×nx and R ∈

R
nu×nu are positive definite weighting matrices, S(·) is the

terminal penalty.
The symbol ū∗(τ, x̄(tk)), τ ∈ [tk, tk + Tp], denotes the
optimal solution to Problem 2, and x̄∗(·; x̄(tk)), τ ∈ [tk, tk+
Tp], is the predicted trajectory of (3) starting from x̄(tk)
driven by the optimal input function ū∗(·; x̄(tk)).

Problem 2 is solved in discrete time with a sample time
of δ. The nominal control during the sample interval δ is

ū(τ) = ū∗ (τ ; x̄(tk)) , τ ∈ [tk, tk + δ), (13)

which is the first segment of the solution of Problem 2. The
overall applied control input for the actual system (1) during
the sampling interval δ consequently is

u(τ) := ū(τ)+K(x(τ) − x∗(τ ; x̄(tk))) , τ ∈ [tk, tk + δ).

The nominal controller calculated online generates a nominal
state trajectory. The ancillary control law obtained offline
keeps the trajectories of the error system in the set Z with
probability p centered along the nominal trajectory.

As the pair (A,B) is stabilizable, the Riccati inequality

(A+BF )TP + P (A+BF ) ≤ −Q− FTRF

admits a solution (P, F ), where P ∈ R
nx×nx is positive

definite, and F ∈ R
nu×nx . Furthermore, there exists a

constant υ ∈ (0,∞) specifying a neighborhood of the origin

Xf := {x̄ ∈ R
nx | x̄TP x̄ ≤ υ}

where Xf ⊆ X0 such that [21]

(1) F x̄ ∈ U0, for all x̄ ∈ Xf , i.e., the linear feedback
control law respects the tightened input constraints in
the set Xf ,

(2) Xf is invariant for the nominal system controlled by the
local linear feedback control law ū = F x̄.

Denote S(x̄) := x̄TP x̄,

dS(x̄)

dt
≤ −x̄T (Q + FTRF )x̄

and

S(x̄(t)) ≤
∫ ∞

t

x̄(s)T (Q + FTRF )x̄(s)ds

Therefore, S(x) and Xf can serve as the terminal penalty
function and the terminal set of Problem 2, respectively [22].

Model predictive control based on the repeated solutions
of Problem 2 stabilizes the nominal system [21, 23].

Associated with Problem 2, the following algorithm is
implemented in this paper.

Algorithm 1:
Step 0. At time t0, set x̄(t0) = x(t0) where x(t0) is the
current state.
Step 1. At time tk, solve Problem 2 with the current
state (x̄(tk), x(tk)) to obtain the nominal control action
ū(tk) and the actual control action u(tk) = ū(tk) +
K(x(tk)− x̄(tk)).
Step 2. Apply the control u(tk) to the system (1) during
the sampling interval [tk, tk+1], where tk+1 = tk + δ.
Step 3. Measure the state x(tk+1) at the next time
instant tk+1 of the system (1) and compute the successor
state x̄(tk+1) of the nominal system (3) under the
nominal control ū(tk).
Step 4. Set (x̄(tk), x(tk)) = (x̄(tk+1), x(tk+1)), tk =
tk+1, and go to Step 1.

Note that a similar algorithm was proposed in [9, 24] where
tube MPC of deterministic systems is considered.

The scheme above has the same online computational
complexity as the standard MPC of deterministic systems
with guaranteed nominal stability [21] since only the nominal
model is used for the prediction of the system dynamics
and only the nominal control action is calculated online in
Problem 2. The properties of the systems under control are
stated in the following theorem.

Theorem 1: Suppose that F , P , Z and Xf are given, and
Problem 2 is feasible at time t0. Then,

(i) Problem 2 is feasible with probability p for all t > t0,
(ii) E [limt→∞ x(t)]=0, and Cov [limt→∞ x(t)] 	 α2γ2I ,

(iii) the system state x(t) converges in probability to v(t).
Proof: (1) For only the “computed” state and the nominal
system dynamics are used to solve Problem 2 at the next
time instant, the online optimization does not depend on the
stochastic disturbances at all. Thus, recursive feasibility as
well as constraint satisfaction is guaranteed with probability
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p, provided that Problem 2 has a feasible solution at the
initial time instant [21].

(2) Because of the asymptotic stability of the nominal
system [21, 23], there exists a class KL function β(x̄, t) [25]
such that

‖x̄(t)‖ ≤ β(x̄(t0), t), ∀t ≥ t0.

Furthermore, since β(·, ·) is a KL function, for all 
 > 0,
there exists t� such that for all t ≥ t�

‖x̄(t)− 0‖ = ‖x̄(t)‖ ≤ β(x̄(t0), t) ≤ 
.

That is, limt→∞ x̄(t) = 0.
For x(t) = x̄(t) + v(t), E[v(t)] = 0 and Cov[v(t)] 	 α2γ2I

E
[
lim
t→∞x(t)

]
= lim

t→∞ x̄(t) + E
[
lim
t→∞ v(t)

]
= lim

t→∞ x̄(t) + lim
t→∞E [v(t)]

= 0,

and

Cov

[
lim
t→∞x(t)

]
= Cov

[
lim
t→∞ x̄(t)

]
+ Cov

[
lim
t→∞ v(t)

]
= lim

t→∞Cov [x̄(t)] + lim
t→∞Cov [v(t)]

	 α2γ2I.

(3) Since v(t) = x(t)− x̄(t), and ‖x̄(t)‖ ≤ β(x̄(t0), t) for
all t ≥ t0,

lim
t→∞[x(t) − v(t)] = 0.

Thus, for every ε > 0,

lim
t→∞Pr {‖x(t)− v(t)‖ > ε} = 0, (14)

i.e., x(t) converges in probability to the random variable v(t).
�

IV. DISCUSSION ON NON-ZERO-MEAN DISTURBANCES

Suppose that E[w(t)] = c(t) ∈ R
nw . For E[v]E[v]T � 0,

Cov[v] 	 α2γ2I , which is not necessarily a supremum of
Cov[v]. In terms of v(t) =

∫ t

0
eAcl(t−τ)Bww(τ)dτ ,

E[v(t)] =

∫ t

0

eAcl(t−τ)BwE[w(τ)]dτ

=

∫ t

0

eAcl(t−τ)Bwc(τ)dτ

Since Acl is Hurwitz, there are constants M ≥ 1 and β < 0
such that [26]

‖eAclt‖ ≤ Meβt, ∀t ≥ 0.

Denote supτ∈[0,∞) ‖c(τ)‖ := cmax,

‖E[v(t)]‖ ≤
∫ t

0

Meβ(t−τ)‖Bw‖ · ‖c(τ)‖dτ

≤
∫ t

0

Meβ(t−τ)‖Bw‖cmaxdτ

=
cmaxM‖Bw‖

−β
.

Furthermore, denote r̄ := r + cmaxM‖Bw‖
−β , and define a

polytopic set

Z̄ := {v ∈ R
nx | vi ∈ [−r̄, r̄]} .

The sets X0 and U0 can be chosen as follows

X0 = X � Z̄
U0 = U �KZ̄.

Therefore, the constraints (2) can be guaranteed with prob-
ability p if x̄ ∈ X0 and ū ∈ U0.

V. ILLUSTRATIVE EXAMPLE

Consider the system described by[
ẋ1

ẋ2

]
=

[−1 2
−3 4

] [
x1

x2

]
+

[
0.5
−8

]
u(t) +

[
0
1

]
w(t), (15)

where x1 and x2 can be measured instantaneously, and the
control input u ∈ R

1. The disturbance w ∈ R
1 is a gaussian

random variable with E[w] = 0 and var(w) = 0.3.
The system is subject to the chance constraint

Pr {−2 ≤ u(t) ≤ 2} ≥ 0.97, ∀t ≥ 0. (16)

Solving Problem 1 to get K =
[−0.4318 1.0288

]
and

γ2 = 0.1987. Thus, Cov[v(t)] ≤ 0.0179I . Furthermore, r =
0.3821 and Z := {v ∈ R

nx | vi ∈ [−0.3821, 0.3821]}, see
Equ. (11). Here a polytopic set rather than a circle is chosen
to bound the effect of white noise.

Choose the stage cost function as l(x̄, ū) = x̄TQx̄ +
ūTRū, where the penalty matrices Q = diag(0.5, 0.5),
R = 1. Both the terminal control law and the terminal
penalty matrix are computed by the solution of a convex
optimization problem, c.f. [27], F x̄ =

[−0.3049 0.3681
]
x̄

and S(x̄) = x̄T

[
1.4425 −1.7215
−1.7215 3.6844

]
x̄. The terminal set of

the optimization problem is Xf = {x̄ ∈ R
n2 | S(x̄) ≤ 10}.

The open-loop optimization problem described by Problem 2
is solved in discrete time with a sampling time of δ = 0.1
time units and a prediction horizon of Tp = 1.5 time units.

Figure 1 shows the state trajectory starting from state
[−8.0 − 8.0]T with the stochastic disturbances w(t), where
the simulation is run 20 times. As can be seen, the chance
constraint (16) has never been violated although the “worst”
disturbance is |w| = 0.8552. It is mainly because controlla-
bility gramian is used to bound the covariance of v(t) for all
t ∈ [0,∞). Furthermore, the system state converges to the
set Z in finite time.

VI. CONCLUSIONS

MPC of continuous-time linear systems subject to white
noises and chance constraints was derived in this paper. An
error system which is the deviation of the actual system
from the nominal system was defined. Ancillary control law
determined off-line keeps the error system to lie in a set
in probability. The optimization problem solved online has
the same computational burden as the standard MPC of
deterministic systems with guaranteed nominal stability. The
solution of the optimization problem defines the nominal
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Fig. 1. Exemplary time profiles for the closed-loop system (15) with Algorithm 1 for disturbances w from x0 = [−8.0 − 8.0]T , where E[w] = 0 and
var(w) = 0.3.

trajectory. The actual trajectory of the system under the
proposed MPC control law is in a set along the nominal
trajectory in probability. Moreover, both recursive feasibility
of the online optimization problem and convergence of the
system in probability are guaranteed if the optimization
problem is feasible at the initial time instant.
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